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Abstract. We introduce a discrete penalty called Boolean Penalty to 0–1 constrained nonlinear
programming (PNLC-01). The main importance of this Penalty function are its properties which
allow us to develop algorithms for the PNLC-01 problem. Optimality conditions, and numerical
results are presented.
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1. Introduction

We introduce a Boolean Penalty to solve the following class of 0–1 constrained
nonlinear programming problems:

(PNLC-01): f * 5 Minimize f(x)

s.t.: F (x) < 0 i 5 1, . . . , mi

nx [ B0 5 h0, 1j ,

n nwhere f, F : R → R, i 5 1, 2, . . . , m, are convex functions on R , with Lipschitzi

constants L and L respectively.f i

Several efforts to solve PNLC-01 have been made in the last 30 years.
Approximate methods are known, see [2, 3, 7, 14]. Few exact methods are capable
of solving this problem with n > 32, due to the nonlinearity of the objective function
and/or constraints, correlation data, non-monotonicity of objective function and/or
constraints, and problem dimensions, see [1, 4–6, 9, 11, 17]. Reviews of the
PNLC-01 can be found in [2, 8, 10, 14].

This paper is organized as follows. In the next section we introduce a Boolean
Penalty. We show that this function is nonincreasing monotone and its small root is

]f *. In Section 3, two algorithms are presented. Given lower and upper bounds t, t for]«the optimal value, Algorithm 3.2 computes an «-optimal solution (x is an «-optimal
« «solution to PNLC-01 if and only if f(x ) < f * 1 «, F (x ) < « ;i) for « . 0, in ai

]number of iterations not greater than log ((t 2t) /«) 1 1. If f and F are polynomial2 i]
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functions, then it is sufficient to consider « 5 1 guaranteeing the algorithm finds an
optimal solution. The main difficulty with the Boolean Penalty is its evaluation,
which corresponds to solve an unconstrained 0–1 nonlinear problem. Numerical
experiments are presented in Section 4. The conclusion follows in Section 5.

2. A Boolean Penalty function

2.1. DEFINITIONS

Associated with the relaxed problem of PNLC-01, i.e. the following problem:
]]]] n(PNLR-01): f 5 Minh f(x) : F (x) < 0 , i 5 1, . . . , m, x [ [0, 1] ji

nwe have the following functions defined for t [ R and x [ [0, 1]

:H(x; t) 5 Maxh f(x) 2 t, F (x), . . . , F (x)j1 m

n:h(t) 5 MinhH(x; t) : x [ [0, 1] j

The following result shown in [12] relates some properties of H and h.

nLEMMA 1. For any fixed t [ R, H(x; t) is convex on R , with Lipschitz constant
nL 5 MaxhL , L , L , . . . , L j. For any fixed x [ [0, 1] , H(x; ?) and h are nonin-H f 1 2 m

ncreasing, convex on R with Lipschitz constant 1. Moreover, h( f *) 5 0 and h(t) . 0
;t , f *.

DEFINITION 2.1. Associated with PNLC-01, we call by Boolean Penalty the
following function defined for any t [ R:

r n:h (t) 5 MinhH(x; t) : x [ B j .

n nSince H(?; t) is a continuous function on [0, 1] for any t [ R and B is finite, then
rh is well defined.

r rGiven t [ R, we denote an argument that defines h by x(t), i.e. h (t) 5 H(x(t); t).
Also we denote an optimal solution to PNLC-01 by x*.

rThe following theorem establishes some properties of h .

rTHEOREM 1. h is a continuous, real, monotone nonincreasing function with
r runitary Lipschitz constant. Moreover, h ( f *) 5 0, h (t) . 0 ;t , f *.

Proof.
(i) Let a [ R, then since H is a continuous function, we have:

rLim h (t) 5Lim hMin H(x; t)j 5Min (Lim H(x; t))
n nt→a t→a t→ax[B x[B

n(ii) Take t , t [ R such that t < t and any x [ R , then from the monotonicity1 2 1 2

of H(x; ?) (Lemma 1), we have H(x; t ) > H(x; t ). Evidently this relation1 2
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n r ralso is true if we minimize on B , i.e., h (t ) > h (t ). Thus, by the Lipschitz1 2

property of H(x(t ); ?) we have:2

r r r ruh (t ) 2 h (t )u 5 h (t ) 2 h (t ) < H(x(t ); t ) 2 H(x(t ); t ) < ut 2 t u1 2 1 2 2 1 2 2 1 2

(iii) Let x* be an optimal solution to PNLC-01, that is, f(x*) 5 f * and F (x*) < 0i

;i, then
rh ( f *) < Maxh f(x*) 2 f *, F (x*), . . . , F (x*)j 5 01 m

r nwhere h ( f *) 5 0. Assume the contrary, there exists x( f *) [ B such that
rh ( f *) 5 H(x( f *); f *) , 0, i.e., f(x( f *)) , f * and F (x( f *)) , 0 ;i, which isi

a contradiction.
r(iv) If h (t) . 0 then, 0 , H(x*; t) 5 Maxh f(x*) 2 t, F (x*), . . . , F (x*)j 5 f * 2 t,1 m

because F (x*) < 0 ;i. Therefore t , f *. Now, if t , f * then, from (iii) andi
r r rthe monotonicity of h (Lemma 1) we have h (t) > h ( f *) 5 0, where

rh (t) . 0 because otherwise we have f(x(t)) , f * and F(x (t)) < 0 ;i, which isi

a contradiction.

rThe following result establishes (from the properties of h ) a lower and an upper
bounds for f *.

COROLLARY 1.
r rIf h (t) . 0, then Maxh f(x(t)), t 1 h (t)j < f * .
rIf h (t) < 0, then f * < f(x(T )) < t .

Proof.
r(i) If h (t) . 0 then 0 , H(x(t); t) < H(x*; t), i.e.,

0 , Maxh f(x(t)) 2 t, F (x(t)), . . . , F (x(t))j1 m

< Maxh f(x*) 2 t, F (x*), . . . , F (x*)j 5 f * 2 t1 m

where it is easy to verify that

Maxht, f(x(t))j < f * . (1)

Also, since t < f * then, from the Lipschitz and the monotone nonincreasing
properties of f (Theorem 1), we have,

r r r ruh (t) 2 h ( f *)u 5 h (t) 2 h ( f *) < ut 2 f *u 5 f * 2 t .

rSince h ( f *) 5 0 (see Theorem 1), then

rh (t) 1 t < f * (2)

Therefore, from (1) and (2) follows the result.
r(ii) If h (t) < 0 then f(x(t)) < t and F (x(t)) < 0, i 5 1, 2, . . . , m, where we havei

f * < f(x(t)) < t because x(t) is a feasible solution.
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rThe following result is a direct consequence of the definition of h and the above
corollary.

rCOROLLARY 2. If h (t) . 0 and x(t) is a feasible solution, then x(t) is an optimal
rsolution. If h (t) < 0, then x(t) is a feasible solution.

2.2. THE EQUIVALENT PROBLEM

Theorem 1 suggests the following equivalent problem to determine an optimal value
of PNLC-01 problem.

(PH-01) Find t [ R such that
rh (t) 5 0 (3)
rh (t 2 d ) . 0 ;d . 0 . (4)

Evidently, from Theorem 1, the above problem corresponds to determining the
rsmallest root of the monotone and nonincreasing function h . Below we demonstrate

that the unique solution of PH-01 is the optimal value of PNLC-01 problem.

THEOREM 2. The unique solution of PH-01 problem is f *.
Proof. From Theorem 1, we know that f * is a solution of PH-01. Now, we

suppose that a solution t* ± f * of PH-01 problem exists. Then, from Theorem 1 and
r(3) it follows that t* . f *. Let d 9 5 t* 2 f * . 0 then by (4), we have: h (t* 2 d 9) .

r r0. Then h (t* 2 d 9) 1 h ( f *) 5 0 which is a contradiction. Hence t* 5 f * must hold.

rThe following result says that in general h has a unique root.

THEOREM 3. If there is an optimal solution x* PNLC-01 such that F (x*) , ) fori
rall i 5 1, 2, . . . , m, the h has a unique root.

rProof. Take any t [ R such that h (t) 5 0, then from the hypotheses of this
Theorem

r0 5 h (t) < H(x*, t) 5 Maxh f * 2 t, F (x*), . . . , F (x*)j 5 f * 2 t ,1 m

where t < f *.
rOn the other hand, since h (t) 5 0, then from Theorem 1, we have t > f *. Thus,

from the relation above we have t 5 f *.

The following lemma, shown in [15], establishes that it is not necessary to compute
an exact solution of PH-01 to find an optimal solution of PNLC-01.

LEMMA 2. There exits a d . 0 such that for any t [ ( f * 2 d, f * 1 d ) it is verified
that x(t) is an optimal solution to PNLC-01.

It was observed in [15] that if f and F , for all i 5 1, . . . , m, are polynomiali
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functions with integer coefficients, it is sufficient to consider d 5 1 to guarantee an
optimal solution.

2.3. OPTIMALITY CONDITIONS

In order to verify optimality conditions, we consider the following results.

] ]THEOREM 4. Given t, t « [ R such that t < f * <t and « > 0.] ]r(i) If h (t) < «, then x(t) is an «-optimal solution.] ]] ](ii) If t 2t < «, then x(t), x(t) are «-optimal solutions.] ]] ] ](x is an «-optimal solution of PNLC-01 if and only if f(x) < f * 1 «, F (x) < « ;i).i

Proof.
r(i) If h (t) < «, then F (x(t)) < « ;i and f(x(t)) < t 1 «. Since by hypothesisi] ] ]

t < f *, then f(x(t)) < f * 1 «.] ]] r ](ii) Since f * <t, then from Theorem 1, we have h (t) < 0, where, from Corollary
] ] ] ]2, we know x(t) is a feasible solution and f(x(t)) <t. Thus we have f(x(t)) <

] rt 1 «, i.e. x(t) is an «-optimal solution. Also, by the Lipschitz property of h] r(Theorem 1) we have h (t) 2 h( f *) < f * 2t, where from the hypotheses and] ]rTheorem 1, it follows that h (t) < f * 2t < «, i.e. f(x(t)) <t 1 « < f * 1 « and] ] ] ]
F (x(t)) < « ;i.i ]

The following optimality condition we follow from Theorem 1 and Corollary 2.

] ] ]COROLLARY 3. Given t, t [ R such that t < f * <t. If Maxh fx(t)), tj 5 f(x(t)) then] ] ]]x(t) is an optimal solution.

3. Boolean Penalty algorithms

3.1. ALGORITHMS

rWe present two Algorithms to compute the smallest root of h , i.e. to solve
PNLC-01.

ALGORITHM 3.1

(0) Choose: « > 0 (desired precision), t < f *
n(1) Compute x(t) [ Arg minhH(x; t) : x [ B j ;

r :Set h (t) 5 H(x(t); t);
(2) Stop Test

rIf h (t) < «, then STOP, x(t) is an «-optimal solution
(3) Update Parameter

r:Set t 5 t 1 h (t);
Go to (1).
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REMARK 3.1.
] ]]]

(1) An initial value to t is the optimal value f of the relaxed problem PNLC-01.
(2) Computing x(t) in Step 1 corresponds to solving an unconstrained 0–1

nonlinear programming problem. This problem can be solved, for example,
through enumeration methods (see [5]), bundle methods (see [16, 17]) or
outer approximation techniques (see [4]).

(3) Actually at each iteration the value of parameter t is growing and is always a
lower bound of f * (see Corollary 1).

(4) The update rule for parameter t, proposed in Step 3 is analogous to the one
proposed in [13] (continuous nondifferentiable optimization).

rThe second proposed Algorithm uses the bisection search and some properties of h
function to accelerate this search.

ALGORITHM 3.2.

] ] :(0) Choose « . 0 (desired precision), t, t [ R such that t < f * <t, set t 5 t] ] ]n(1) Compute x(t) [ arg minhH(x; t) : x [ B j
r :Set h (t) 5 H(x(t); t)

(2) Stop Test
] rIf ((t 2t) < « or h (t) < «) then, STOP, x(t) is an «-optimal solution.]

(3) Update parameters
3.1 Update by the best bound

r ] :If h (t) < 0 then, t 5 f(x(t))
r:else t 5 Maxht 1 h (t), f(x(t))j;]

3.2 Update by bisection
]:t 5 0.5(t 1t)]

(4) Go to (1).

REMARK 3.2.
] ]]]

(1) An initial value to t is the optimal value f of the relaxed problem PNLC-01.] ]When the Lipschitz constant L is estimated, an initial value for t parameter isf] ]Îgiven by f 1 L n.f
](2) A practical procedure to determine an initial value to t is given by:

:Choose D . 0 (relatively large), t , f *, set t 5 t 1 D] ]
r ]: :While (h (t) . 0) do t 5 t 1 D; set t 5 t

(3) Computing x(t) in Step 1 corresponds to solve an unconstrained 0–1
nonlinear programming problem. This problem can be solved for example
through enumeration methods (see [5]), bundle methods (see [16, 17]) or
outer approximation techniques (see [4]).
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3.2. CONVERGENCE ANALYSIS

Next we study the convergence of the proposed Algorithms.

THEOREM 5. Let « 5 0, the Algorithm 3.1 converges to an optimal solution of
(PNLC-01) problem in a finite number of steps.

Proof. We denote by t the value of parameter t in the kth iteration (k > 0). Thek

initial value of t we denote by t .0

Suppose that the Algorithm does not converge, i.e., 'd . 0 such that: h9(t ) . di
r r

;i > 0. Thus from Step 3, we have: t 5 t 1 h (t ) . t 1 d, t 5 t 1 h (t ) . t 11 0 0 0 2 1 0 1
nd . t 1 2d, and, in general, t . t 1 kd ;k > 0. Since f is continuous on R and B0 k 0

is bounded, then there exists a k [ N such that f * , t 1 kd, where from the last0

relation we have: f * , t . This is a contradiction because t < f * ;i > 0 (see Remarkk i

3.1). Therefore, Algorithm 3.1 converges.
Now, we prove that the Algorithm converges in a finite number of steps to an

optimal solution.
nLet d 5 MinhMaxhF (x), F (x), . . . , F (x)j : x [ B , F (x) . 0 for some ij (5)1 2 m i

nActually, d . 0 unless the domain of the studied problem is B . Since the Algorithm
converges, there is k [ N finite such that ut 2 t u 5 t 2 t < d ;i > k, wherei11 i i11 i

rfrom Step 3 of the Algorithm, it follows, in particular, that 0 < h (t ) < d. Evidently,k
rif h (t ) 5 0 then the Algorithm stops with an optimal solution. Thus, we supposek

rthat 0 , h (t ) < d, then from (5) and Corollary 2 we have that x(t ) is an optimalk k

solution, therefore

rh (t ) 5 Maxh f(x(t )) 2 t , F (x(t )), . . . , F (x(t ))j 5 f * 2 tk k k 1 k m k k

thus,
r r r r rh (t ) 5 h (t 1 h (t )) 5 h (t 1 f * 2 t ) 5 h ( f *) 5 0k11 k k k k

where from Step 2, the Algorithm converges to an optimal solution in a finite
number of steps.

The following result estimates the efficiency of Algorithm 3.1.

THEOREM 6. Algorithm 3.1 converges to an optimal solution (« . 0) in less than
( f * 2 t ) /« iterations (where t is the initial value of parameter t).0 0

Proof. We denote by t the value of parameter t at the ith iteration (i > 0). Fromi

the above Theorem, there exists a k [ N such that

rh (t ) . « ;i , k (6)i

rh (t ) < « (7)k

where from Theorem 1, it follows that
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r r r« , h (t ) 5 h (t ) 2 h ( f *) < f * 2 t . (8)k21 k21 k21

On the other hand, from Step 3 of the Algorithm and (6), it follows that

t . t 1 i« ;i , k .i 0

Thus, from (8) we have « , f * 2 t 2 (k 2 1)«, i.e., k , ( f * 2 t ) /«.0 0

The following Theorem establishes the convergence of Algorithm 3.2.

THEOREM 7. Given « 5 0, Algorithm 3.2 converges to an optimal solution in a
finite number of steps.

] ]Proof. We denote by t and t the corresponding values of parameters t and t ini i] ]] ]the ith iteration, and by t and t the corresponding initial values of t and t.0 0] ]] ]From the parameter update rule (Step 3), we have that t 2t < (t 2t ) /2i11 i11 i i] ]
;i . 0, where

] ] it 2t < (t 2t ) /2 ;i . 0 .i i 0 0] ]

On the other hand, from Lemma 2, there exists d . 0 such that, for any t [ ( f * 2

d, f * 1 d ) we have that x(t) is an optimal solution. Thus, from the relation above, it
is easy to see that there is a k [ N such that

] ] kt 2t < (t 2t ) /2 , d . (9)k k 0 0] ]

Moreover, from Step 3 of the Algorithm, Corollary 1 and Remark 3.2, we have that
] ]t < f * <t ;i > 0. Thus, from relation (9), it follows that: [t , t ] , ( f * 2 d, f * 1i i k k] ] ]d ), i.e., Algorithm 3.2 converges in a finite number steps, and x(t ) and x(t ) arek k]

optimal solutions.

THEOREM 8. Given « . 0, Algorithm 3.2 converges to an «-optimal solution of
]PNLC-01 in a number of iterations not greater than log ((t 2t ) /«) 1 1.2 0 0]] ] iProof. From Step 3 of Algorithm 3.2, we have that t 2t < (t 2t ) /2 ;i . 0,i i 0 0] ]] ] kwhere it is easy to see that there exists a k [ N such that t 2t < (t 2t ) /2 < « ork k 0 0] ]]equivalently by k > log ((t 2t /«). Thus, from the stopping rule (Step 2), the2 0 0] ]Algorithm finishes in a number of iterations not greater than log ((t 2t ) /«) 1 1.2 0 0]

On the other hand, from the parameter update rule (Step 3) and Corollary 1, it
]follows that: t < f * <t ;i > 0. Thus, from the optimality condition (Theorem 4),i i] ]we know that x(t ) and x(t ) are optimal solutions to PNLC-01.k k]

4. Numerical experiments

Algorithm 3.2 was implemented in FORTRAN F77L3. We used the cutting plane
Algorithm proposed in [16] to solve the 0–1 min–max nonlinear problem (Step 2 in
the Algorithm). All numerical experiments were executed on a 100-MHz Intel 486
DX4 processor with 8 Mbytes of memory.
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4.1. TEST PROBLEMS

We indicated by O.F., C.F. and O.S. the objective function, the constraint and the
optimal solution respectively. In order to evaluate the number of iterations of
Algorithm 3.2, we considered the following test problems.

• Problem 1:
n n

2O.F.: O x 2 1.8 O x 1 0.81ni i
i51 i51

n

C.F.: O x 2 n 1 1 < 0i
i51

O.S.: x 5 0 for some j [ h1, 2, . . . , nji

x 5 1 ;i [ h1, 2, . . . , nj 2 h jji

• Problem 2:
n

O.F.: Sen p 1 (p /n) O xS Di
i51

n

C.F.: O x 2 n /2 1 1 < 0i
i51

n
nO.S.: Any point x [ B such that O x 5 n /2 2 1i

i51

• Problem 3:
n

x 1xi i11O.F.: O e
i51

n

C.F.: 1 2 O x < 0i
i51

O.S.: x 5 1 for some j [ h1, 2, . . . , nji

x 5 0 ;i [ h1, 2, . . . , nj 2 h jji

• Problem 4:
n n

O.F.: Sen p 1 (p /(2n)) O x 1 Cos p 1 (p /2)) O xS D S Di i
i51 i51

n

C.F.: O x 2 n /2 1 1 < 0i
i51

n
nO.S.: Any point x [ B such that O x 5 n /2 2 1i

i51
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• Problem 5:
n / 2 n

x xi iO.F. O (0.1) 1 O (1.04)
i51 i5n / 211

n21
2 x 1xi i11C.F.: ne /2 1 2e 2 O e < 0

i51

O.S. x 5 1 ; j [ h1, 2, . . . , kj ,i

2 2where k 5 minh((n /2 1 1)e 1 e 2 n 1 1) /(e 2 1), nj
(a : denote the least integer, greater than a).

4.2. NUMERICAL RESULTS

In Table 1 we can observe our numerical results for a sample of 10 problems (see
another numerical experiments in [15]). For each problem we consider n [ h4, 8, 16j
and (desired precision), i.e., optimal solution. Also, for each problem we consider an
increasing variation of the gap for the optimal value, proportional to 1, 2 and 4.

The numerical experiments presented in Table 1 show that an exponential
increase of the gap corresponds to a linear increase of the number of iterations of the
Algorithm. For all the test problems considered the Algorithm converges to an
optimal solution in few iterations, we would conclude that the lower and upper
bounds provided for the Boolean Penalty (see Corollary 1) were good.

5. Conclusion

We have introduced a Boolean Penalty, and presented an exact and robust Algorithm
to solve constrained 0–1 nonlinear programming problems. The main contribution
of the Boolean Penalty Algorithm is the fact that it enables us to solve PNLC-01 by
computing the minimum root of a continuous, real and nonincreasing monotone
function (equivalent problem), called Boolean Penalty.

Theoretical results on the efficiency of the Algorithms of Boolean Penalty show
that these Algorithms converge to an «-optimal solution in few iterations, as it is
verified in the numerical experiments (see Table 1). The complexity of each iteration
of Algorithms is equal to the complexity of solving an unconstrained 0–1 nonlinear
programming problem, and it is well-known that this class of problem is NP-hard.
The numerical experiments presented in Table 1, also show that an exponential
increase of the gap corresponds to a linear increase of the number of iterations of
Algorithm 3.2. When the objective function is not convex, it is always possible to
convert it to a form like PNLC-01, adding a penalty term (see, for example, [17]).
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Table 1. Numerical results for the Boolean Penalty Algorithm (Algorithm 3.2)

Prob n LB UB Gap Iter f *

1 4 0.0 3.5 3.5 3 0.84
21.75 5.25 7.0 4
25.25 8.75 14.0 4

8 0.0 7.0 7.0 3 0.88
23.5 10.5 14.0 4

210.5 17.5 28.0 5
16 0.0 14.0 14.0 3 0.96

27.0 21.0 28.0 5
221.0 35.0 56.0 5

2 4 21 1 2 3 20.70711
22 2 4 4
24 4 8 4

8 21 1 2 3 20.92388
22 2 4 4
24 4 8 5

16 21 1 2 3 20.98079
22 2 4 5
24 4 8 5

3 4 3.0 10.0 7.0 4 4.71828
20.5 13.5 14.0 4
27.5 20.5 28.0 4

8 7.0 20.0 13.0 4
0.5 26.5 26.0 4

212.5 39.5 52.0 5
16 15.0 40.0 25.0 5 16.71828

2.5 52.5 50.0 5
222.5 77.5 100.0 6

4 4 22.0 2.0 4.0 3 21.30657
24.0 4.0 8.0 4
28.0 8.0 16.0 4

8 22.0 2.0 4.0 4 21.38704
24.0 4.0 8.0 5
28.0 8.0 16.0 5

16 22.0 2.0 4.0 4 21.4074
24.0 4.0 8.0 5
28.0 8.0 16.0 5

5 4 0.0 4.0 4.0 2 2.28
22.0 6.0 8.0 3
24.0 12.0 16.0 3

8 0.0 8.0 8.0 3 4.48
24.0 12.0 16.0 3
28.0 24.0 32.0 4

16 0.0 16.0 16.0 4 8.84
28.0 24.0 32.0 4

216.0 48.0 64.0 4

Prob, [ test problem; n, number of variables; LB, lower bound for optimal value; UB, upper
bound for optimal value; f *, optimal value; Iter, number of iteration.
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